ТЕСН И О ТЕ

TN146

APx500ソフトウエアを使った USBオーディオのクローズドループテスト

今回のTechnoteは

今回は、サードパーティのソフトウェア「Dante Via」を使用して、 APxオーディオアナライザーでUSB オーディオデバイスのクロ ーズドループテストの方法について説明します。今回は、APx を使用してUSBオーディオデバイスをテストしたい人のための 入門書として書かれており、特定のデバイス、測定、音響テス トフィクスチャではなく、測定技術に焦点を当てています。オー プンループテスト技術を使用してUSBヘッドセットをテストする ことに興味がある方は、TechNote142を参照してください。

何故Dante Via?

APx500 ソフトウェアは、WDM (Windows ドライバ モデル) USB オーディオ デバイスとのインターフェイスを公にはサポートし ていないため、代替ソリューションを使用して、DUTと APx500 ソフトウェア間で USB オーディオストリームをルーティングす る必要があります。そのようなソリューションの1つは、USBデ バイスとAPx500 ASIO(オーディオストリーム入出力)インター フェイス間のブリッジとして使用できるAudinateのソフトウェア アプリケーションであるDante Viaです。

図 1.APx500ソフトウエアとUSBオーディオデバイス間のクローズ ドループオーディオパス

このソフトウェアを使用すると、Windowsで検出され たUSB録音デバイス(マイクが埋め込まれたウエブ カメラなど)からのオーディオをDante Via ASIO

ドライバにマッピングし、アナライザー入力として

ASIOドライバを選択することでAPx500で測定でき

ます。逆に、APx500によって生成されたオーディオ

は、検出されたUSB再生にルーティングできます。

デバイス(USBヘッドフォンなど)は、アナライザ出力と してDante Via ASIOドライバを選択します。両方のコ ンテキストで使用されるオーディオパスを図 1 に示し ます。ASIOは、Stein-berg Media Technologies GmbH が開発したPCオーディオドライバ技術(以来、プロオー ディオ業界で採用されている)で、オーディオソフトウェ アが、非常に低いレイテンシ、高いチャンネル数、およ びビット精度のデータ転送で、接続されたオーディオ ハードウェアおよびソフトウェアと直接通信できるよう にします。

注: ASIOではビット精度の高いデータ転送が可能ですが、 Dante Viaを介してルーティングされたオーディオは、 48kHzのサンプルレートと24ビットのサンプル深度に 自動的にリサンプリングされます。 さらに、フルスケールのオーディオ刺激で駆動すると デバイスがクリップするのが一般的であるため、最高の パフォーマンスを得るには、Dante Viaを介してAPx ジェネレータ信号をルーティングするときにヘッドルームを 残すことをお勧めします (例えば、0dBFSではなく-1dBFS)。

図 2. Dante Vaを通した1 kHz,-1 dBFS サイン波ルーティングのFFTス ペクトラムでAPx500ソフトウエアで測定

AP

なぜクローズドループか?

クローズドループとは、オーディオアナライザによって生成された高品質のオーディオ刺激信号がDUTに入力され、DUT 出力信号が取得され、1回の連続動作でアナライザ入力部に よって分析される一般的なオーディオテストを指します。クロ ーズドループテストのアプローチは、オーディオアナライザの 解析セクションがどの信号が生成され、いつ存在するかを 「認識」するため、本質的にオープンループテスト(生成と解析 が同じ操作で実行されない)よりもはるかに簡単です。さらに、 生成セクションと分析セクションは、最適な効率のために連 携して作業できます。

クローズドループテストの長所は以下の点です。

- 外部デバイスで録音や再生を手動でトリガーすることなく、テストを実行できます(オープンループテストを行うときに再要求されます)。これにより、テストプロセスが単純になり、通常はDUTとのユーザー操作を必要とするテストシーケンスの自動化が可能になります。
- 目標読み取り値が達成されるまでジェネレータレベルを自動的に調整します(たとえば、アナライザ入力読み取り値を94dBSPLに調整する場合など)。
- アナライザの出力レベルと入力レベルの両方
 を知っているソフトウェアに依存する測定を
 行います(ゲイン、直線性、信号対雑音比など)。
- 安定した読み取り値が取得されるとすぐに、ジェネレータをステップスイープの次のスイープポイントに自動的に移動させることで、テスト時間を最小限に抑えます。

オープンループとクローズドループのテストに関す るより詳細な議論については、AP.com enti-tledの ブログ記事を参照してください。

<u>Conducting Open Loop Audio Tests with APx Audio Analyzers.</u>

ハードウエア仕様

今回実行するUSBデバイスをテストするには、次の ハードウェアが必要です。

- 2 つ以上の ASIO チャンネル用にライセンスされた APx オーディオ アナライザー。
- 1 つ以上の音響テスト アクセサリ (音響出力または入力を持つデバイスをテストする場合)。
- Windows 10PC
- USB DUT

オーディオアナライザ

USBオーディオデバイスをテストするには、DUTの出力を キャプチャするか(再生デバイスの場合)、または オーディオ刺激を生成する(録音デバイスの場合)ために オーディオアナライザが必要です。これはどのAPx アナライザでも実現できますが、電気音響デバイスを テストするユーザーは、APx517アコースティック オーディオアナライザがお薦めのソリューションです。 APx517にはパワーアンプとステレオヘッドフォンアンプが 内蔵されており、ラウドスピーカーやマウスシミュレータの 駆動に使用でき、接続されたマイクロフォンやイヤー シミュレータにCCPまたはファンタム電源を供給するための マイク電源も使用できます。複数の信号経路を持つデバイス をテストするユーザーは、オプションのデジタルモジュールを 使用して、Bluetoothモジュールまたはその他のテスト インタフェースを統合することもできます。

図3. APx517アコースティックアナライザ

APx500 Flexオーディオアナライザを使用することもできますが (図4)、選択したオーディオインターフェイスをWDMデバイスと して実装する必要があり、セットアッププロセスにはいくつ かの追加手順が必要です。これらの追加の手順は、TechNoteに 記載しています。

図4.AnAPx500Flexオーディオアナライザ

どの機器を使用するかにかかわらず、AP×アナライザは少なくとも2つのASIOチャンネルのライセンスを取得する必要があります。

注: APxアナライザーは3つ以上のASIOチャンネルのライセンスを取得できますが、Dante Via ASIOドライバーは2つの出力チャンネルと2つの入力チャンネルしかサポートしていないため、Dante Viaと組み合わせて使用できるチャンネルは2つだけです。

音響テストアクセサリー

オーディオアナライザに加えて、デバイス出力をキャプチャ するためや、デバイス入力を刺激するために使用される音 響出力を提供するために、複数の音響アクセサリも必要で す。USBヘッドフォンなどのUSB再生デバイスの場合、これ にはヘッドおよびトルソシミュレータまたはその他の音響テ ストフィクスチャ(図5GRAS 45CAヘッドフォンテストフィクスチ ャ)が含まれる場合があります。録音デバイス(ヘッドセットの マイクなど)をテストするユーザーには、音響刺激を生成する ためのスピーカーまたはマウスシミュレーターと、スピーカー 出力レベルを校正するためのリファレンスマイクが必要です。 ここでは、USB デバイスのクローズドループ テストの実行に 関する一般的なガイドであり、USB オーディオ デバイスの 任意のクラスをテストする方法を詳しく説明するものではな いため、考えられる音響テストのセットアップの概要を説明し ます。特定のテストアプリケーションで使用する音響アクセ サリに関する推奨事項については、AP.com で提供されてい る情報を使用してお問い合わせください。

図 5. GRAS 45CAヘッドフォンテキスチャー

ソフトウェア仕様

ソフトウエアの仕様としては以下の通りです。

- APx500 ASIO はバージョン 3.1 以降、APx500 ソフト ウェアで利用可能になりましたが、v5.0.2以降の利用 を推奨いたします。
- 2. Dante Via(有償)
- 3. Dante Controller(無償)

Dante Via を使用して APx500 との間でオーディオをルーティング するには、APx500 ソフトウェアアプリケーションをオーディオソース および送信先として検出するように Dante Viaを設定する必要が あります。以下の手順で、Dante Viaの初期設定を実行します。

- 1. Dante Viaを立ち上げる。
- 図6の右側の歯車マークをクリックして、設定ダイア ログを開きます。
- 3. Show ASIO compatible audio devicesを可能にして 設 定が変わったら、OKをクリックする。
- 4. 設定ダイアログを閉じます。
- 5. Startボタンをクリックし、Dante Viaを起動します。

Ap)

図 6. Dante Viaユーザーインターフェース

ソフトウエア構成

ここでは、APx500 とサポート ソフトウェアを構成して、USB デバイスに対してオーディオを生成したり、USB デバイス からオーディオを受信する方法について説明します。再生 デバイスをテストするようにソフトウェアを設定するには、 「オーディオの生成…」の手順に従います。セクション;録音 デバイスをテストするようにソフトウェアを設定するには、 「オーディオの受信…」の手順に従います。いずれの場合も、 「Windows サウンド設定」を、事前に完了する必要がありま す。

Windows Sound Settings

WDM デバイスは再生および録音デバイスとして Windows とやり取りするため、一部の Windows オーデ ィオ セッティングは、DUTのパフォーマンスに影響を与 える可能性があります。これらの設定は、次のように構 成する必要があります。

 再生または記録デバイスの音量:DUTの音量は100%に 最大化する必要があります。

- 既定の再生デバイス:これは、システム音が測定に干渉しないように、DUT以外のデバイスに設定する必要があります。
- 空間サウンドや低音ブーストなどのオーディ オ機能強化。これらは無効にする必要があり ます。

Windows 10では、これらの設定にアクセスするには、 [サウンド設定]を開き、[関連設定]パネルの [サウンドコントロールパネル]リンクをクリックします(図7)。

再生デバイスのオーディオ生成

ここではAPx500でジェネレーターをオンにすると、設定され た刺激がDUT(USB再生デバイス)から出力されるように、 APx500とDante Viaの両方を設定する方法を示します。 USB ヘッドセットは次の図に示されていますが、ここで説明 する手順は、少なくとも1つの音響(または他の)出力を 持つすべての USB オーディオ デバイスに適用されます。

図8.再生デバイス利用時のオーディオテストパスの例

これを行う前に、USBデバイスの接続を確認して、電源 を投入してください。

オーディオの生成: Dante Viaを構成

- テスト対象のUSBデバイスに1つ以上の出力が ある場合は、Dante Viaの右側の列にある「オー ディオの宛先」のリストに表示されます。デバイ スのリストをスクロールして、テストする出力を見 つけます。
- 出力の横にある[Danteを有効にする]スイッチを 切り替えて、オーディオ出力先として有効にしま す(図9)。

図9. オーディオ伝送方向の例

- 3. APxオーディオアナライザをPCに接続し、電源を 入れたまま、APx500ソフトウェアを起動します。
- ソフトウェアがロードされたら、Dante Viaの左側のパネルにあるオーディオソー スのリストで「APx500」を見つけます。 「ローカルアプリケーション」の下に表示 されます(図10)。
- 5. Danteを有効にする」スイッチを切り替えて、APx500 をオーディオソースとして有効にします。

 ソース「オーディオ精度APx500」を左クリックして有効になった DUTオーディオデスティネーションにドラッグし、カーソルが 「ソースをドロップして聴く」の上にカーソルを置いたら マウスボタンを放します。これにより、APx500ジェネレータの 出力信号がDUTにルーティングされます(図11)。

Search for audio destinations 👂
Disable Dante
rce here to listen

ドラッグ&ドロップ操作が成功すると、選択したオーディオ出力先の 下の[受信中]リストにAPx500ソースが表示され、Dante VIaが APx500からDUTにオーディオをルーティングするように 構成されていることを示します(図6)。

オプション: Danteコントローラー

ドラッグ&ドロップ方式でオーディオをルーテ ィングする場合、ソースとデスティネーション 間のチャンネルマッピングは、1 対 1、2 対 2 などの順番で決定されます。場合によっては(2 つ以上の出力を持つデバイスをテストする場 合)、カスタムチャネルマッピングが必要にな ることがあります。このような場合、Danteコ ントローラーソフトウェアを使用して、APx500 とDUT間のカスタムチャンネルマッピングを適 用できます。以下のように、APx とデバイス間 にカスタム チャネルマッピングを適用します。

- Dante Viaの「Danteコントローラーを開く」ボ タンを使用するか、Windowsの検索ボックスを 使用してDanteコントローラーを検索して、 Danteコントローラーを起動します。
- 「送信機」と「受信機」の横にある「[+]」ボタンをクリッ クして、利用可能な送信機と受信機チャンネルを表 示します。送信側にAPx500の二つのチャンネルが、 受信側でデバイスの1または2チャンネルが利用で きるのが分かります。(図12)

TN146 | Testing USB Audio Devices using Dante Via

 現在のチャンネルマッピングを編集するには、
 送信機と再受信側チャンネルの交点にある正方形を クリックします。緑色のチェックマークは2つの チャネル間の元マッピングを示し、空の正方形は マッピングが設定されていないことを示します。

🧕 Dante Controller - Network View			-		×	
File Devices View Help						
	+	2	۲	Primary Clock: T	S-Ber	2
Routing Device Info Clock Status Net	work Sta	tus	Ever	nts		
Filter Transmitters Filter Receivers	Transmitters (1)	TS-Benk-02	Audio Precision APx500:Left D Audio Precision APx500:Right D			
TS-BenK-02		E		Ĩ.		^
USB Headset(Speakers):Left USB Headset(Speakers):Right	8		0			
		<			>	~

オーディオの生成: APx500の構成

Dante Viaがセットアップされたので、DUTに正弦波を出力し、 検証できるようにAPxを設定できます。以下の手順は APx500 ソフトウェアのシーケンス モードに関連していますが、ベンチ モードでも同じ手順を少し調整して実行できます([接続の確認] パネルの代わりに[ジェネレータ]パネルを使用)。以下の手順に 従って、DUTにオーディオを生成するように APx500 ソフトウェ アを設定します。

- 信号パスのセットアップで、出力コンフィギュレーションヘッダーの下で、出力コネクタをASIOに設定します(図13)。
- 2. Device Listから、"Dante Via"を選択します。
- ASIO 出力コネクタの横に表示される歯車アイ コンをクリックして、ASIO 設定パネルを表示し ます。

< Signal Pa	ath Setup		
G Outpu	t Configuration		
Connector:	ASIO	~]	93
Device:	Dante Via	~	Edit Connector Settings
	Reset		
Scaling Mode:	Digital	~	
	Enable Dither		
Latency:	3008 samples	Aut	to

図 13. Output Configurationパネル

4.ASIO出カチャンネルの「Danteのtx1」と「Danteのtx2」の ASIO出カチャンネルが「APx出カチャンネル」列にマッピング されていることを確認します(図14)。

APx	Output Channels 🕆 🕂 🔛
3	Dante tx 1
2	Dante tx 2
3	

⊠14. "APx Output Channels"

- 5. 設定ダイアログを閉じます。
- 図15のようにSignal Path Setupの"Verify Connections" を使って、ジェネレータレベルを 3 dBFSに設定し、ジェネレータをONにします。
- 7. "Test Channel"を使って、テスト信号がAPx500出 カチャンネルで受信できるように選択します。

セットアッププロセスが正常に完了した場合は、Dante Via/Dante コントローラーの現在のチャンネルマップpingに基づいて、 アクティブ化されたテストチャンネルでデバイスから1kHzのトーンが 発せられるのが聞こえるはずです。

(デバイスが1kHzの正弦波に合格できない場合は、適切なテスト刺激用にジェネレータを設定して、再試行してください)。 終了したら、Test Channelを全チャンネルに戻します。

ここでは、再生デバイスにオーディオを生成する方法を示す ことですが、APx517アコースティックオーディオアナライザを 使用してUSBオーディオデバイスの出力を刺激およびキャプ チャするようにAPx500信号パスを設定する方法を示すため に、図16を表示しています。

Outpu	t Configuration			
Connector:	ASIO	~	•	
Device:	Dante Via	v		
	Reset			
Scaling Mode:	Digital	×		
	Enable Dithe	er		
Latency:	3008 samp	oles 🗹 Au	ito	
Input 0	Configuration			
	Loopback			
Connector:	Mic	~	O A	
Channels:	2 🗘 🗸	Acoustic		
Microphone	Ch1			
Connector:	Unbalanced	v	AC	~
Power:	CCP Y	4mA		~
	ON			
Microphone	Ch2			
Connector:	Unbalanced	~	AC	~
Power:	CCP ~	4mA		*
	ON			

図16. APx517を使って、USB再生デバイスをテストする例

TN146 | Testing USB Audio Devices using Dante Via

録音デバイスから音を受信

このでは、APx500ソフトウェアを使用して、録音デバイス (USBマイクなど)で受信した信号を測定できるように、APx500と Dante Viaの両方を設定する手順を示します。

図17.録音デバイスをテストする際のオーディオパスの例

入力と出力の両方を持つデバイス(ヘッドセットなど)をテスト する場合、オーディオ生成に関する前のセクションでDante Viaで行われたチャンネルマップpingを無効にする必要はあり ません。両方のチャンネルセットをマップすると、ASIO出力ま たはASIO入力がAPx500ソフトウェアで設定されているかどう かで、両方のオーディオパス(録音と再生)のテストが保留解 除されます。

オーディオの受信: Dante Viaの構成

- USBデバイスに1つ以上のインプットがある場合 は、Dante Viaの左側の列の「オーディオソース」 のリストに表示します。デバイスの横にある 「Enable Dante」スイッチを切り替え、オーデ ィオソースとして有効にしてテストします。
- オーディオ出力先のリストで「APx500」を見 つけます。それは「ローカルアプリケーション」 の下になければなりません。「Danteを有効に する」スイッチを切り替えて、Danteコントロ ーラーのオーディオ出力先として有効にします。
- 3. 起動したDUTオーディオソースをAPx500にド ラッグします(図18)。

4 Local	Applicatior	ns - 2 items		
AP	Audio Pr	ecision APx5	00	Disable Dante
100	Now Rece	ewing:		
5	3	Kansmit	Drop a source here to listen	

図18. APx500にDUTデバイスをドラッグした例

オーディオの受信: APx500の構成

- 1. Signal Path Setupの"Input Configuration"でt ASIOを設定。
- 2. ASIOデバイスに "Dante Via" を選択
- 3. 歯車アイコンを使って ASIO設定ダイアログを開き ます。

- "Danterx1"と"Danterx2"をAPx入力チャンネルに 入っていることを確認します。
- 5. 設定ダイアログを閉じます。

これが出来ると、APx500ソフトウエア上でUSBデバイスの信 号を確認することができます。

図 19. USB ヘッドセナマイクで録音したホイッスルトーン

ここでは、録音デバイスからオーディオを受信する方 法を示しますが、APx517アコースティックオーディオ アナライザを使用してUSB録音デバイスを刺激および 測定するようにSignal Path SetupのAPx500ソフトウ ェアのスクリーンショットを表示致します。(図20)。

Measurements

信号パスが設定されたので、Dante ViaとDanteコントローラ ーを閉じることができ(注:停止していない)、他の種類のデバ イスのテストを準備するときと同じように、APx500プロジェク トファイルで目的の測定値を追加して設定することができま す。APx500に組み込み、構成する方法に関しては、

<u>Technote 129: Production Test with APx Au-</u> dio Analyzers.を 参照願います。

以下はDante ViaまたはDanteコントローラーを使って アコー スティック応答でUSBヘッドセッを測定した結果になります。

図 22. ヘッドセットイヤホン(左右)トラッキング応答

クローズドループテスト構成のいくつかの利点の1 つは、オープンループテスト構成と比較して多くの 追加測定を行うことができることがです。このよう な測定の例には、次のものがあります。

- Stepped Level Sweep
- DC Level Sweep
- Crosstalk Sweep (all three variants)
- Crosstalk, One Channel Undriven
- IMD Frequency Sweep
- IMD Level Sweep
- Maximum Output
- Regulated Frequency Sweep

信号経路遅延に関して

Dante Viaは10ミリ秒の遅延があるとされていますが、USB オーディオデバイスによってもたらされる遅延の増加の可 能性は、APx500プロジェクトファイルを設定するときに考慮 する必要があります。信号パスの遅延を考慮する方法の1 つは、Signal Path Setup出力/入力設定パネルの下部にあ るDUT遅延設定を使用することです。ただし、この設定は、 遅延が可変ではなく安定している場合に最も便利です。

Device Under Test

DUT Delay: 0.000 s 🛛 🖌 🖨

🗵 24. DUT Delay

DUT遅延設定を使用する代わりに、デバイスの遅延に 「Extend Acquisition」設定を使用することもお薦め致し ます。取得をどの程度の確率で行う必要があるかを判断 するには、音響応答測定を使用することをお勧めします。 複数の測定値を追加し、インパルス応答グラフのx軸上の 拡散量を見ることによって、発生する最大遅延量を決定 し、少なくともその量だけ収録時間を拡張することがで きます(図25)。

図25.インパルス応答グラフ この例では要求値より少なくとも 180ms遅延していることが分かります。

グラフにインパルスが見られない場合は、波形全体が 見逃されている可能性があります。この場合、信号が見つかるまで 収録の長さを大幅に延長し、必要に応じて短くする必要があります。 インパルスが単に視界から外れていないことを確認するために、 グラフをパーンする必要があるかもしれないことに注意してください。

Signal Processing				
Extend Acquisition:	200	.0 ms	¥ 🖨	
Averages:	1	*		

Figure 26. The "Extend Acquisition" setting.

テスト構成では、200ミリ秒の延長でシグナルパスの遅延を 考慮するのに十分であることがわかりましたが、これは DUT、PC、その他の要因によって異なる場合があります。 測定値が収録全体をキャプチャするようには、音響応答の 測定結果に基づいて必要と思われる値よりも少しだけ集録を 拡張することをお勧めします。

最後に

ここでは、APx500 を構成する方法と、USB オーディオ 再生および録音デバイスのクローズドループ テストを 可能にするソフトウェアをサポートする方法を 示しました。USBヘッドセットまたはヘッドフォンの テストに使用できる音響器具または測定値については、 Technote142を参照してください。他の種類のデバイスの テストに使用される音響アクセサリに関する推奨事項に ついては、AP.com Web サイトに記載されている コンタクト情報を使用してお問い合わせください。

補足: APx500 Flexにおいて

ここでは、APx500 Flex アナライザーの使用時に Dante Via を設定するために必要な追加手順について説明します。前 のセクションにリストされた手順は、補足資料に進む前に、 設定、遵守する必要があります。他のアナライザは本件該当 致しません。(APx515/52x/555/58x)

注意:APx500 FLEXの利用方法と完全に一致している利用 方法ではありませんので、詳細は <u>APx500 Flex Getting</u> <u>Started and Installation Guide</u>.を参照願います。

オーディオインターフェース仕様

APx500 Flexで使用するオーディオインターフェース(サウン ドカード)を選択する際には、さまざまな要素が必要ですが、 USBオーディオデバイスのクローズドループテストを実行す る場合は、Dante Viaソフトウェアとインターフェースできるよ うに、オーディオインターフェースがWDM対応であることをさ らに確認する必要があります。

注意: ヘッドセットのようなUSBデバイスはWDMが利用可能な インターフェースが必須です。

オーディオインターフェースがPCに接続してから電源を投入し てください。

再生デバイスによるオーディオの発信

以下の手順で、Dante Viaを使って、APx500ソフトウエア上 での測定を行います。

 USB オーディオ デバイスの出力を測定するため に使用されるインターフェイス入力を表す Windows 録音デバイスを決定します (このインターフェイス入 力の一般的な名前は "Line" です)。

2. Dante Viaで、左側のパネルのオーディオ ソー スのリストで録音デバイスを見つけて有効にしま す。

3. オーディオソースを「APx500」 オー ディオデスティネーションにドラッグします。

図 27. インターフェース入力マッピング例

- 1. "Audio Precision APx500"可能にします。
- 2. APx500ソフトウエアでASIO接続を設定します。

これでオーディオインターフェースの信号はAPx500ソフトウエア 上で表示されます。

録音デバイスからのオーディオを受信

- APx500 Flexを使用してUSB録音デバイスを テストする場合、APx500ジェネレーター出 力をDante Viaを使用してオーディオイン ターフェース出力にルーティングする必要 があります。再生パスと録音パスの両方 (ヘッドセットなど)を持つデバイスをテス トする場合は、APx500 Flex の使用時に両 方の信号パスを設定することは不可能であ るため、先に進む前に、この付録の前のセ クションの「オーディオの生成」セクショ ンで行った map-ping をクリアする必要が あります。
- USBオーディオデバイスの入力を刺激する ために使用される出力を表す再生デバイス (「スピーカー」など)を決定します。
- Dante Viaで、オーディオデスティネーションのリストでデバイスを見つけて有効にします。
- 3. "Audio Precision APx500" オーディオソースとして 可能にします。
- 4.APx500オーディオソースを有効にしたオーディオ 出力先(「スピーカー」)にドラッグします。

0	Speakers 2- Echo AlO	Disable Dante
	Now Receiving:	
31	AP Audio Brecision AP	tegere to listen

図 28.ドラッグ &ドロップし

5. 最後に、APx 出力コネクタを ASIO に設定します。 正しく設定されていれば、APx500 の [接続の確認] パネルで設定された刺激は、ジェネレータがオンのと きにオーディオ インターフェイスの出力に表示されま す。

TN146 | Testing USB Audio Devices using Dante Via