カテゴリー: ソフトウェア

    Audio Precisionのソフトウェア

複数チャンネル同時入力機能

APx500ソフトウエアVer6では、複数同時入力対応ができる機能を盛り込んでいます。

複数チャンネル入力で、アナログ、デジタルの同時入力による測定ができるようになりました。これにより、例えば、デジタルマイクの感度を、アナログリファレンスマイクのRMSレベルの比較を行うことで、決めていくようなことに有用に利用できます。

複数入力機能は、シーケンスモード、ベンチモードで利用できます。デジタル、アナログ出力を同時に使うようなオーディオデバイスにとって、同時に評価できることもあり、開発用や生産ライン用にも有効に活用できます。デジタルマイクやスマートスピーカーや携帯電話やBluetoothヘッドセット等のデバイスの開発者にとって、アナログのリファレンスマイクとの連動させて、同時測定が行える非常に役に立つ機能です。ただし、FLEXではこの機能は使えませんのでご承知願います。

同時入力の機能を使った例として、

を参照願います。(日本語字幕対応の動画も、適宜アップしていきます。)

詳しいことは以下のサイトを参照願います。

任意の波形に対するAPxジェネレーターレベルの設定方法

APx500ソフトウエアを使うと、wavファイルをロードすることで、様々な任意の波形を生成でき、測定に寄与することが出来ます。しかし、波形の生成レベルを特定するのはかなり難しい 事です。今回、その生成レベルと測定レベルの相関性を述べたいと思います。

APxアナライザーによる測定で得られた波形はwavファイルのような波形ファイルとして保管されていますが、そのスケールはrms(実効値)レベルで保存されます。今回APx Waveform Generator Utilityで作ったReference Level.wavファイルを使って考えていきましょう。このファイルは、0, -1, -3, -20,-60 dBFSのレベルで997Hzのサイン波のReference Levelとしたファイルとして利用致します。APxジェネレーターレベルは0dBV(1.0Vrms)に設定されています。

ジェネレーターレベルと生成したレベルとの相関性は任意の波形では簡単に語れるものではございません。図1はAPxソフトウエアの一部POLQA-F1-S1-48k.wavを使ったPOLQAの会話による波形を示しています。上のグラフは入力コネクタを利用して測定し、-1~+1Dの範囲に分布しています。真ん中のグラフは、アナログループバックで得た信号を示しています。

レベルは1.0Vrmsに設定しています。下のグラフは、信号の時間に対するRMSレベルを示したグラフになっています。ベンチモードで取得し、250ポイント/秒で測定しております。Rmsレベルは-115dBV(ノイズフロア)~-13dBVと変化しています。会話のレベルは約-25dBVで測定しています。信号の全てのrmsレベルの評価は、RMSから得られる結果から簡単に取得できます。(取得方法は、結果表示エリアにカーソールを置き、右クリックでAdd Derived Result – Min/Max Statistics – Single Value – RMSの順で設定致します。)

図1の全てのrms値は-23.085dBFSです。

図1. A speech waveform (top) loaded as a .wav file into the generator; the waveform acquired in analog loopback (middle) and its RMS Level versus time (bottom) recorded at 250 readings per second.

デジタルフルスケールでピークを取った、ジェネレーターレベルと生成したサイン波との一対一での相関性は、デジタルフルスケールで任意の波形ファイルのピークを取る際に、有用に利用できます。図2の上のグラフは図1の会話レベルを示しています。下のグラフは、アナログループバックで測定した波形からの信号になります。ジェネレーターレベルは1.0Vで設定しています。

図2. The speech waveform of Figure 1 scaled such that the maximum instantaneous level is 1.0 D (top) and the waveform acquired when this signal is generated in analog loopback at a Generator Level of 1.0 VP

任意の波形に対して、ジェネレーターレベルの設定を決める方法は以下の通りです。

1.測定したい帯域において、Lowパス・Highパスフィルターを設定します。
2.初期値としてVG1をジェネレーターレベルとして設定します。
3. 信号を生成し、VM1を値として測定します。
4. 式(1)(VrmsやdBFSのリニアレベルの単位を使った)またはdB単位(dBVやdBFS)を使った式(2)を利用して目標とした生成レベルを計算致します。

例えば、ターゲットとする測定rms値をVMT = -20.0 dBVと想定しましょう。図1の波形において、ジェネレーターレベルを 1.0 Vrms (VG1 = 0.0 dBV) で設定した際、VM1 = -23.08 dBVの値が測定されました。式2を使うと、VGT = +3.08 dBVとなります。この値は、目標値-20.0dBVの測定レベルでジェネレーターレベルを制御した結果と位置付けられます。

尚、ラウドスピーカーや特定の地点からのアコースティックレベルを設定するようなノンリニアのシステムでは、回数を重ねて測定することが想定されます。

詳細は以下のサイトをご参照お願い申し上げます。

The “Big Six” Audio Measurements(Big6オーディオ測定)

ベンチマークはR&Dの開発チームの指標として使われますが、オーディオテストの世界ではDUTの性能を示す「Big6」という数少ないベンチマークが代表的なものとして活用しております。

         ・Level

         ・周波数応答

         ・全高調波歪みとノイズ

         ・位相

         ・クロストーク

         ・信号とノイズの比率(SN比)

①Level

最も基本的なオーディオ測定に使われる要素で、装置がどの程度のエネルギーを出力するのか?一方GainはAmplitude(振幅)を共通認識としての測定単位として利用されています。

各DUTはいくつかのLevel測定を持ち、エンジニアは目標となるLevelを設定して測定にあたっております。例えば、

・入力Levelは1Vや1Wやその他単位を使って出力Levelを導きだします。

・入力LevelはTHD+N1%のような出力の歪みを生み出します。

・あるLevelは操作卓で心地の良いノイズ性能を生み出します。等々

これらの値は、参照Levelを使っての測定結果となっています。

例えば、周波数応答測定は、中域周波数のLevelの相関性を使って表示しています。

THD+Nは特定のLevelの測定を行った結果を表示しています。等々Level測定を用いたGain考察例

DUTの入力電圧に対する出力電圧の比がDUT電圧のGainとなります。

またあるDUTはGainの調整が出来ず、固定であるケースもあります。さまざまなGainからLevelを測定するケース

ボリューム制御やGainに影響を及ぼす設定等のもつDUTはGainを変更できる装置です。

測定や設定に際して、望むような結果を導くDUT制御設定ができます。

②周波数応答

周波数応答は明らかに異なる周波数をもたらしているDUTの出力Levelを表示致します。

通常、全周波数応答測定は、2,3トーンから構成しています。同じLevelでトーンが発生すると想定したら、DUTの出力レベルは、それぞれの周波数において、表示されます。

全範囲の周波数応答測定はさまざまな方法で行うことはできますが、一般的には低周波数域から高周波数域へサイン波をスイープさせます。結果は平坦なグラフが表示されます。これは、DUTが全ての周波数に対して、同等に応答していることを示します。

下の図はその一例です。

Figure 1: Typical DUT flat frequency response curve.

③THD+N(全高調波歪み+ノイズ)

高調波歪みはオーディオ信号の新しいトーンに対する望まれていない追加の産物です。ある周波数F1のサイン波の信号にはF2,F3と2次、3時の高調波が発生しています。これらの高調波の合計が高調波歪みとなります。ところがノイズを除去して高調波を測定することは困難なことです。そこで一緒に測定することと致しました。この手法は特別ですが、広く受け入れられている性能測定となっています。

Phase(位相)

位相測定は参照する波形に対して、サイン波のような周期的な波形のサイクルにおける時間のオフセットに対して正か負を示す指標として利用されます。参照するものはシステムの中の異なったポイントにある同等の信号や違ったチャンネルにある関連した信号を利用します。

Figure 1: Demonstration of two channels being out-of-phase

この位相測定は装置の入出力やチャンネル間の位相に利用されます。位相変移は周波数により変化しますが、ある周波数の位相測定や周波数スイープの位相応答のプロットに使わることは珍しくありません。

⑤Crosstalk(クロストーク)

クロストークはあるチャンネルに他のチャンネルの出力からLevelを減少させる望ましくない信号の漏れになります。これを消失することはかなり困難なことです。クロストークはチャンネル間で影響を及ぼした結果であって、周波数と共に上昇する傾向があります。

⑥Signal-to-Noise Ratio(信号とノイズの比率;SN比)

SN比はDUTの最小または最大時の運用Levelで設定された信号比になります。例えば最大値での利用の場合は、ダイナミックレンジと呼ばれます。SNRはマイナス(-)で示されます。SNRはまず信号Levelを測定して、その後、測定帯域に対してフィルターを施しながら、ジェネレーターをoffにしてノイズLevelを測定します。この二つの比率がSNRとなります。

R&Dの開発者から製造に携わるところで、オーディオ測定は様々な評価方法を求められます。各DUTにおけるベンチマークや処方の確立は技術者にとって、製品の開発や創造における明確な判断を導く手段となっています。

尚、詳細な情報を参照したい場合は、以下の英語版サイトをご参照願います。

特殊なオーディオ測定

皆さんこんにちは、コーンズテクノロジーです。
今回は、オーディオ測定の特殊点について話したいと思います。

 最新の高速回路を設計する電気エンジニアたちは、オーディオ測定に置ける特別なアイディアに驚かされることがあります。要するに、ギガヘルツ帯のマイクロプロセッサやもっと高速回路を扱う人達、およびすくなくとも100 MHzの帯域幅を持つオシロスコープで作業する人にとって、オーディオ測定の20kHzのベースバンドは少し古臭いかもしれません。しかし、いくつかの要素を駆使して、オーディオ測定を特殊の域までに発展させていきました。
 まず、人間の耳が認識できる周波数帯域は最高20kHzまで、最低は20Hz若しくはもっと低い周波数帯の音を検知できます。それは10オクターブの帯域幅である。ラジオにAMの周波数帯からマイクロ波に引き下げるようなことである。実際のところ、最新のオーディオアナライザーは、クラスDチップとデルタシグマコンバーターから発生するノイズシェーピングとスプリアスアウトバンド製品を観察しながら、パワーアンプのDCオフセットを測定するよう求められます。
私たちのアナライザーは、DCから1 MHzを1 Hzの分解能で解析できます。
 次に、非常に大きな周波数帯をカバーするけれども、オーディオ信号の総合振幅レンジも大きいです。最新のオーディオアナライザーはノイズが1桁のµVで測定される最先端のD / Aコンバーターから200 V出力のパワーアンプまで、すべての出力を観察する必要があります。さらに、200 Vrmsの正弦波を測定をする時に、システムは、基本波よりも60〜100 dB低い可能性がある高調波積の振幅
を解決できる必要があります。APx555自体のノイズは1 µV未満で、最大入力レベルは300 Vrms、範囲は170 dBです。

 それでは、オーディオ測定の何が特殊ですか?答えは非常には広い周波数帯幅でかなりの高い精度や正確さを求めることです。